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Review: a review of the recent methods 
for determining trap depth from glow 
curves 
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Materials Research Laboratory, Department of Physics, Shivaji University, Kolhapur, India 

The paper reviews some of the important methods used in determination of the trap depth 
E from glow curves. Their suitability, merits and demerits are examined. 

1. Introduction 
It is now well established that the electronic 
processes in the materials are markedly influ- 
enced by the presence of trapping levels. 
However, because of numerous complexities 
involved in real materials, a detailed quantitative 
theory of electron traps is still lacking. Attempts 
made so far in this direction have been confined 
to simple cases under certain specific assumptions. 
Most of the information presently available on 
real materials has been derived mainly from 
experimentation. For such studies, fluorescent 
materials have attracted a particular interest 
because their remarkable properties are mainly 
due to the electron traps. The experimental 
measurements have proved invaluable in provid- 
ing a direct insight into the electronic process 
involved and have yielded valuable information 
about trapping levels. 

The most important parameter to be deter- 
mined is E, the trap depth which is nothing but 
the thermal energy required to liberate a trapped 
electron. There are several methods proposed for 
determining E. However, the experiments which 
have proved most convenient are the measure- 
ments of thermally stimulated luminescence 
(TSL) and thermally stimulated conductivity 
(TSC). In TSL, the sample is first excited opti- 
cally in dark and is then warmed up at a linear 
heating rate. The resulting luminescence intensity 
is measured as a function of the sample tempera- 
ture. The curve obtained showing a variation of 
intensity with temperature is referred to as the 
"glow curve". In TSC, on the other hand, the 
electrical conductivity is studied as a function of 
temperature. If  required both these measure- 
ments can be performed simultaneously. 

The theory of TSL can be applicable with 
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slight modification to the TSC case. Here the 
conductivity is related to the glow intensity I by 
the relation G = ~reFI, where -r is the life time, 
e is the charge, F is the mobility. 

Several methods based on the analyses of the 
glow curves and TSC curves have been proposed 
and used for determining E, and they are 
reviewed in this paper. The attempts have been 
made to determine E from other related proper- 
ties such as the dielectric constant and the photo- 
luminescence decay, but such methods are not 
discussed in the present review. 

2. Determination of the trap depth 
A typical glow curve exhibiting a single peak is 
shown in Fig. 1. Temperature corresponding to 
the maximum intensity is called the peak 
temperature Tin. Variation in the temperature 
range can result in more peaks, each correspond- 
ing to a specific trap depth. In the case of over- 
lap, the successive peaks can be distinguished by 
suitably quenching the previous peaks. The 
individual peaks can be analysed in numerous 
ways and E can be determined. The methods 
can be categorized in three main types: (1) 
methods based on Tin, (2) methods based on the 
shape of the curve, and (3) methods based on 
both Tm and the shape. 

2.1. Methods based on Tm 
2.1.1. Method due to Randall and Wilkins 
The first theoretical treatment for a well-isolated 
thermoluminescence peak has been due to 
Randall and Wilkins [1 ]. Their analysis is based 
on a model in which there are a number of 
discrete trapping levels from which electrons are 
thermally excited into the conduction band, and 
the recombination of free electrons takes place at 
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Figure 1 A typical glow curve showing single glow peak. 

deep centres. The theory makes the following 
three assumptions: (a) glow peaks corresponding 
to different trapping levels do not overlap, (b) 
transitions directly between various trapping 
states and other centres are negligible, and (c) the 
life-time 7 for recombination is so small that 
(dn)/dt ~ n/~- where n is the concentration of 
electron in the conduction band, an assumption, 
in general, found to be true for phosphors and 
semiconductors. 

The electrons in traps have Maxwellian 
distribution of thermal energies, and hence one 
can write 

dn ( E )  
d-t = n S e x p  - k---T (1) 

where S is the escape frequency factor or the 
pre-exponential factor as it is also sometimes 
called. The solution of Equation 1 is given by 

S ~ E /kT)  dT] - 

where n o is the initial concentration of 
trapped electrons prior to heating, and/3 is the 
heating rate. The intensity I of the thermo- 
luminescence peak is given by 

dn ( E )  
I =  - C ~  = C n o S e x p  - 

e x p [ ( - - ~ )  ~TPo exp( - /~T)aT] (3) 

where C is a constant of proportionality. In the 
beginning, the intensity rises exponentially with 
temperature. However, soon the concentration of 
trapped electron is considerably reduced and the 
intensity, after reaching a maximum at a certain 
temperature Tin, begins to fall and reaches to 
zero when all the traps have emptied. In the 
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Randall and Wilkins method, Tm corresponds to 
temperature a little below which the frequency of 
an electron escaping the trap is 1 per second, 
that is 

Sexp -k-T--m x {1 + f ( S , / 3 ) } =  1 

The functionf(S,/3) ~ 1, and this gives the trap 
depth E 

E = Tra[1 + F(S,/3)1 k log S (4) 
where F(S,/3) is another function of S and /3. 
For S = 2.9 x 109sec -1 the above relation 
reduces to 

E = 25kTm (5) 

This is very similar to the relation given inde- 
pendently by Urbach [2], also derived from 
Equation 3, for S ~ 109 sec -1 

E = Tin/500 (6) 

Both Equations 5 and 6 are found to yield a right 
order of magnitude of E for a number of 
phosphors [3, 4]. The numerical factors in both 
equations are dependent upon the value of S, and 
hence, the values of E thus obtained are only 
approximate. S, in fact, may be different for each 
trap in the same substance. 

The position of maximum is obtained by 
differentiating Equation 3 with respect to T and 
equating to zero which yields 

kTra ~ /3 exp - k--T-m (7) 

The above equation can be evaluated numerically 
and within an error of 1% it can be expressed 
[5] as 

E = TIn(K) - To(fl/S ) 
K(/3/S) (8) 

where the functions To and K may be obtained 
graphically for different values of/3/S and then 
used for determining E [4, 6, 7]. If either of the 
parameters E and S are known the Equation 7 
can serve as a transcendental equation which can 
be solved numerically for the unknown para- 
meter. However, as there are several other 
methods to determine E, which do not require 
the knowledge of S, the Equation 7 is invariably 
used for determining the parameter S. 

2,1.2. Method due to Booth and Bohun 
The method suggested independently by Booth 
[8] and Bohun [9] uses different heating rates to 
estimate E. Solving Equation 7 for two different 
heating rates t31 and/32 they find 
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k Tin, Tin2 ]3l T=, 2 
E - T-m~ ~ Tin= log/32 Tin2 (9) 

where Tin, and Tin2 are respectively observed 
peak temperatures corresponding to heating 
rates/31 and fi2. S is given by [10] 

log ~- = Tin=log /32 - Tm~log 

(rm, - Tin2) (10) 

This method is convenient for determining E. If 
Tm can be measured within an accuracy of 1 K 
the method is found to yield E within 5 ~. Schon 
[11] has modified the equation by replacing Tm ~ 
by Tm 3"5 which has resulted in somewhat 
improved accuracy. 

2.1.3. Method due to Hoogenstraaten 
Another method for measuring E is due to 
Hoogenstraaten [12] who, using Equation 7 has 
shown that peak temperature is related to E by 
the equation 

E Sk 
log (rm2/]3) = ~ + log-~ (11) 

Thus the plot between log(Tin2//3) against 
1~Tin is linear having a slope Elk and intercept 
log Sk/E. Thus both E and S can be determined 
[13]. Apart from being simple the method has 
the advantage of being insensitive to retrapping 
effects. 

2.2. Methods based on the shape of the curve 
2.2.1. Initial rise method 
This method is due to Garlick and Gibson [14] 
and is an extension of Randall and Wilkins' 
theory. For the second order kinetics they find 

I = n 0 2 S e x p  - N 1 + ~r To 

This equation is equivalent to Equation 3 
applicable to the first order kinetics. In the 
temperature range T <Tm all the factors other 
than exp ( -  E/kT) in both Equations 3 and 12 
do not vary much and, therefore, in the initial 
part of the glow curve I oc exp ( -  E/kT) for 
either type of kinetics. Thus, the plots of log I 
against 1/T are linear having slope equal to 

- (Elk). This provides a quick analysis of the 
initial ascending part of the glow peak which 
yields the value of E without any knowledge of S 
[3, 15]. However, due to some experimental [16] 

and theoretical [17, 18] reasons under certain 
situations, the method is found to be inconsis- 
tent. 

2,2.2. Isothermal decay method 
In this method, after excitation, the sample is 
quickly heated to a specific temperature and at 
this temperature the luminescence decay is 
measured. The method, being isothermal, has the 
advantage that such difficulties, as arising from 
overlapping peaks and change in quantum 
efficiency or the emission spectra occurring 
under the non-isothermal conditions, are avoided. 
The decay curve obtained can be analysed and it 
has been shown [19] that for the first order 
kinetics, 

I(T) = noS exp - ~-~ 

exp [-- Stexp (-- (13) 
giving 

log I ( T )  = - S t  exp - k T  - 

E (14) 
k-T + log (noS) 

The slope of the linear plot obtained between 
log I(T) against t is 

m = S e x p  - ~ - ~  (15) 

Taking the slopes m 1 and rn 2 at two temperatures 
T1 and T~ give 

log ~1 [1  1 ] ( - ~ )  
m 2  == r ' l  - T2  - (16) 

From Equations 15 and 16 the value of E and S 
can be determined [3]. 

2.3. Methods depending on both shape and 
Tm 

There have been several methods proposed 
which use the peak temperature Tm and two 
temperatures Ta and T2 which are respectively the 
temperatures on either side of Tm corresponding 
to half the intensity (Fig. 2). T~ and T~ depend 
upon the shape of the glow curve. 

2.3.1. Grossweiner' s method 
Using Equation 3 for the first order kinetics, 
Grossweiner [20] has shown that E, in terms of 
Tm and T1, is given by 

E = 1.51 k Tm Tt/(Tm - 7"1) (17) 
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Figure 2 Different parameters determining the shape of 
the glow curve. 

E thus calculated is found to be accurate within 
+ 5 ~  provided Sif t  > 107 deg -a a n d E / k T m > 2 0  
[13]. The above formula is empirically modified 
by Chen [21] with 1.41 replacing 1.51. This yields 
E with a better accuracy. 

2.3.2. Method due to Lushchik 
Results very similar to above have been obtained 
by Lushchik [22]. For the first order kinetics, he 
has obtained 

E = k Tm2/(Tz - Tm) (18) 
The derivation is on the assumption that the area 
of the peak towards the fall-off is equal to the 
area of the triangle having the same height and 
half width, an assumption which is found true 
for an accuracy of 5 ~ .  Under this assumption, 
for the second order kinetics E is given by 

E = 2k  Tm~/(T2 - Tin) (19) 

The merit of Grossweiner and Lushchik methods 
is in their obvious simplicity in evaluating E [13 ]. 
For better accuracy, the above two equations 
have been empirically modified by Chen [21] by 
multiplying by 0.978 and 0.853 for the first and 
second order kinetics respectively. 

2.3.3. Halperin and Braner's method 
A somewhat different approach which uses both 
T 1 and T2 is due to Halperin and Braner [23]. 
They considered luminescence emission as 
mainly due to two kinds of recombination 
processes. In one process the recombination 
takes place via conduction band and in the other 
the electron raised to an excited state within the 
forbidden gap below the conduction band 
recombines with the hole by tunnelling process. 
In the first type of process the value of E is 
found to be 

E = q k Tm z (1 - A)/(T2 - Tin) (20) 
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while in the other it is given by 

E = q k TraZ/(Tz - Ira) (21) 

where A = 2k Tm/E, and q depends upon the 
shape of the glow peak and the kinetics of the 
process. For the first and second order kinetics q 
is respectively given by 

ql = [1.72 Fg/(1 - Fg)] ( -  1.58A) 
q~ = [2/Zg/(1 - /xg)] (1 - 2A) 

where Fg = ( 7 ' 2 -  T m ) / T m -  T1 is the sym- 
metry factor which is a convenient parameter to 
decide the type of kinetics involved. If  
/Xg < e -1 (1 + A) the kinetics is of first order 
while /Xg >~ e -1 (1 + A) corresponds to the 
second order kinetics. On substituting the values 
of q in Equations 20 and 21 for E and calling 
Tm - T1 = ~" yields E for two types of kinetics 

Ez = (1.72/7) k Tm ~ (1 - 2.58A) (22) 

E2 = (2/7) k Tm 2 (1 - 3A) (23) 
Here expressions containing higher powers of A 
are neglected. The advantage of this method is 
that the first half of the peak is sufficient for the 
evaluation of E, and it also points a way of 
determining the kinetics of the process involved 
[24, 4]. 

2.3.4. Method due to Chen 
The method suggested by Chen [21 ] to determine 
E follows from Randall-Wilkins' formula with 
the Same assumption as of  Lushchik. For the 
first order kinetics E is given by 

E~ = 2k Tin[1.25 Tm/(Tz - Tx - 1) (24) 

and for second order kinetics 

E~ = 2k Tm[1.756 Tm/(Tz - T 1 - -  1) (25) 
In the above equations, the numerical constants 
are chosen empirically to give a good estimation 
of E. 

2.3.5. Keating method 
The methods described so far assume S, the 
frequency factor, to be independent of tempera- 
ture. There is, however, substantial evidence 
[25, 26] to suggest the assumption to be unjusti- 
fied. Keating [27], thus considered S = BT ~ 
where B is a constant, and the magnitude of a is 
given by - 2 ~< a ~< + 2. For  the first order 
kinetics the final expression for E is found to be 

E = k T m f ( 1 . 2 - F - O . 5 4 ) ( T ~ - m T ~ ) q -  

- [ �89  0.75)]~ -1" (26) O.0055 
J 
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where F = T 2 -  Tin~Tin- T1, and T 1 and T2 
being defined earlier. The formula is found to 
hold true for 0.75 < F < 0.9 and 10 < Elk  Tm 
< 35 [13]. 

2.3.6. Inflection point method 
]n this method, suggested by Land [28], use is 
made of the inflection temperature Ti of the glow 
curve for evaluating E. The inflection tempera- 
ture is given by setting the second derivative for 
the intensity temperature relation expressed by 
Equation 3, to zero. This gives 

k T m T i  
E - I Ti - Tml log A / Q  (27) 

where Q = (Ti/Tm) 2 and A = 0.77 and 2.66 
respectively for Ti < T m  and Ti > Tin. Thus, by 
measuring Ti and Tin, E can be determined. The 
method has been applied for evaluating E for 
Y203 and The2. Except when the peaks are 
overlapping, the method has yielded consistent 
results. 

2.3.7. Numerical  kinetics m e t h o d  

This method of analysis [29] involves a numerical 
computation which proceeds in small arbitrary 
time steps. During each step the concentration of 
trapped charge, the carrier concentrations, the 
radiative relaxations of excited centres, etc. are 
adjusted in accordance with the physical 
processes involved. When used to analyse the 
experimental data some initial approximate 
values of E and S are chosen and they are 
suitably varied to determine the values giving the 
best least-square fit to the experimental data. 

2.3.8. Area measurement method 
The method proposed by Muntoni et al [30] for 
activation energy is based on the area under the 
glow curve. The kinetic equation proposed by 
Antonov-Romanovskii [31] and Lushchik [32] 
is of the form 

dm 
dt  - A m ~ e -E/KT giving I = - ~/3 dm (28) 

where ~ is a suitable numerical parameter 
representing kinetics order. On integration, the 
above equation takes the form m(T)  = S(T)/oL/3 
where S(T)  is the integrated area of the curve in 
the interval from T to Tf where Tf is the temper- 
ature corresponding to the end of the glow 
curve. The above equation may be expressed 

log { I ( T )  

o r  

1 �84 E 

log [S(T)] ~ - k Tm + C (29) 

where C = log (A al -~/3% Plot of log[ l /S (T)  ~] 
versus l IT  gives straight line, slope of which 
determines the activation energy. 

If  in the case of bimolecular process, where 
o~ = 2, the curve is concave while for the mono- 
molecular case, where c~ = l, the curve is convex, 
the value of c~ which results in linear plot 
represents the order of kinetics involved. In 
general, c~ may be fractional. The method thus 
provides a semiempirical approach to thermo- 
luminescence. 

Another method involving area measurement 
is suggested by Maxia et al [33] who have shown 
that 

cosO + sin os(r)\_ 
s2(r) + A s ( r )  j k r  + ~ (30) 

E X  
r k + /x (31) 

where Y is the term on the left hand side and 
X = lIT. 0 is a function of the area of  the glow 
curve and probability factors for recombination 
and retrapping which determines the linear 
behaviour of Yand X. Except for 0 all quantities 
on the left hand side of the above equation can be 
determined from the TL spectrum. 

The correlation coefficient 

coy(X, Y) 
P - [v(x) v(Y)]* 

can be numerically computed as a function of 0, 
and 0 is conditioned for p or p2 attaining unity. 
From this the activation energy is given by 

coy(X, Y) - k coy(X, Y) 
E =  - k .  V(X)  = " V ( Y )  (32) 

E calculated thus is found to agree with that 
obtained using the method of Muntoni et al [30]. 

3. Conclusion 
Having reviewed above various methods used for 
determining the trap depth E it is now worth 
examining briefly their points of merits and 
demerits. Although such points were mentioned 
in the preceding sections while considering the 
individual methods it seems appropriate to 
summarize them here. 

The methods belonging to the first category, 
that is, those based on Tm alone, have the common 
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drawback that they assume the monomolecular 
kinetics in the luminescence process. Thus, 
unless one is sure that it is not really justifiable 
to use them for evaluating E, the same criticism 
should be applied to the isothermal decay method 
of the second category, and Grossweiner's and 
Keating's methods of the third category. The 
initial rise method described in Section 2.2.1 is, 
on the other hand, based on the measurements 
carried out in the lower part of the low tempera- 
ture side of the glow peak which are affected 
least by the type of kinetics, and hence, the 
method is independent of the kinetics involved. 
As would be expected, the values of E thus 
calculated are however associated with traps 
which are relatively shallow. 

When the kinetics are not known E is most 
reliably determined using the methods of the 
third category, excepting the two methods 
mentioned above. Of these, Halperin and 
Braner's method and the area measurement 
method described respectively in Sections 2.3.3 
and 2.3.8 are particularly convenient for 
determining the type of kinetics involved. Once 
the kinetics are known a good estimate of E can 
be obtained using various methods such as of 
Lushchik and Grossweiner, incorporating the 
empirical modifications suggested by Chen. 

Despite the analytical and experimental 
simplicity of the TSL it is worth pointing out 
some of its obvious limitations. First of all the 
experimental arrangement is, in general, such 
that the method possesses a degree of uncertainty 
in the actual temperature of the sample. There is 
a temperature gradient between the lower and 
upper surface of the sample. This can be reduced 
by using thin and fiat-faced samples. 

Another drawback of TSL is that when the 
trapping levels are close together the glow peaks 
tend to overlap and the problem of resolution of 
the individual peaks becomes formidable. In the 
case of overlap, the individual peaks can, in 
general, be isolated by suitably quenching the 
previous peaks. Nevertheless, the method still 
leaves uncertainties in the resolution of the peaks. 

Further criticism of TSL is that the measure- 
ments are sensitive to structural inhomogeneities. 
Results obtained on single crystals are, in 
general, found to differ from those obtained on 
polycrystalline or powdered samples Of the same 
material. Also, surface states can produce peaks 
on the glow curve which are found to vary with 
the irradiation dose. This can affect the shape of 
the original glow curve and make the problem of 
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peak resolution difficult. Lastly, TSL cannot 
detect the non-radiative centres. This can, how- 
ever, be done by TSC studies. 
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